
    Vpf$
                         d dl mZ d dlmZ d dlmZ d dlm	Z	 d dl
mZmZ ddeded	ed
edef
dZddeded	ed
edef
dZdS )    )laxN)_const)promote_args_inexact)Array	ArrayLike   xblocscalereturnc                 <   t          d| |||          \  } }}}t          | d          }t          j        t          j        | |          |          }t          j        t          j        ||                    }t          j        t          j        |t          j        t          j        ||          t          j        |                                        }t          j
        t          j        | t          j        ||                    t          j         |          S )ae  Pareto log probability distribution function.

  JAX implementation of :obj:`scipy.stats.pareto` ``logpdf``.

  The Pareto probability density function is given by

  .. math::

     f(x, b) = \begin{cases}
       bx^{-(b+1)} & x \ge 1\\
       0 & x < 1
     \end{cases}

  and is defined for :math:`b > 0`.

  Args:
    x: arraylike, value at which to evaluate the PDF
    b: arraylike, distribution shape parameter
    loc: arraylike, distribution offset parameter
    scale: arraylike, distribution scale parameter

  Returns:
    array of logpdf values.

  See Also:
    :func:`jax.scipy.stats.pareto.pdf`
  zpareto.logpdfr   )r   
_lax_constr   divsublognegaddmuljnpwhereltinf)r	   r
   r   r   onescaled_xnormalize_term	log_probss           [/var/www/html/nettyfy-visnx/env/lib/python3.11/site-packages/jax/_src/scipy/stats/pareto.pylogpdfr      s    8 */1aeLL!QU1a#WSWQ__e,,(7375!,,--.gcgncgcgaooswxGXGX.Y.YZZ[[)	36!SWS%0011CG8Y	G	GG    c                 J    t          j        t          | |||                    S )a^  Pareto probability distribution function.

  JAX implementation of :obj:`scipy.stats.pareto` ``pdf``.

  The Pareto probability density function is given by

  .. math::

     f(x, b) = \begin{cases}
       bx^{-(b+1)} & x \ge 1\\
       0 & x < 1
     \end{cases}

  and is defined for :math:`b > 0`.

  Args:
    x: arraylike, value at which to evaluate the PDF
    b: arraylike, distribution shape parameter
    loc: arraylike, distribution offset parameter
    scale: arraylike, distribution scale parameter

  Returns:
    array of pdf values.

  See Also:
    :func:`jax.scipy.stats.pareto.logpdf`
  )r   expr   )r	   r
   r   r   s       r   pdfr#   :   s"    8 
1c5))	*	**r    )r   r   )jaxr   	jax.numpynumpyr   jax._src.lax.laxr   r   jax._src.numpy.utilr   jax._src.typingr   r   r   r#    r    r   <module>r+      s                1 1 1 1 1 1 4 4 4 4 4 4 , , , , , , , ,!H !Hi !HI !HI !H) !HTY !H !H !H !HH+ +9 + + +y +QV + + + + + +r    